Secondary Math III
 Applications of Exponential/Logarithmic Functions Assignment 10.5

Compound Interest Formulas: $\quad A=P\left(1+\frac{r}{n}\right)^{n t}$
Name \qquad
Period \qquad

Must show set up of formulas and all work for each problem.

1. Alden invested $\$ 600$ in a savings account at 5% interest compounded continuously. How many years will it take for the amount in the account to grow to $\$ 770$? Round to 2 decimal places.
2. An investing group has $\$ 50,000$ to invest. They put the money into an account that compounds monthly at a rate of 6%. How much money will the group have at the end of 10 years?
3. Six years ago, Manuel invested $\$ 10,000$ in an account with continuous compound interest. If he has $\$ 12,000$ in the account now, what is the interest rate of the account? Write answer as a percent.
4. Interest is compounded quarterly at Money Bank at a rate of 4.4%. Jay Westerley opens an account with $\$ 7200$. How much money will be in the account at the end of six years?
5. Aubrey needs to save $\$ 10000$ for her first year of college. She plans on depositing $\$ 5000$ into an account that pays 4% compounded continuously. If she is attending college in 4 years, will she have enough to pay for it? If not how much will she be short?
6. Sasha wants to earn the maximum interest on her money. She deposits $\$ 500$ in two different banks for 1 year to compare them before she deposits all her money. One bank compounds interest daily at 2.2% interest and another bank compounds interest quarterly at 4.3%. Determine how much money she will have at the end of the year in each account.

For problems 7-9, use the exponential model $y=C e^{k t}$

7. The population of Beijing, China in 2012 was approximately $20,690,000$ and is growing exponentially at a rate of about 5.5%. The equation that models this growth is $y=20690000 e^{0.055 t}$, where $t=0$ corresponds to 2012 . What population could be predicted for the year 2020 ?
8. Carbon-14 is a radioactive isotope with half-life of about 5710 years. It is used in carbon dating to find the age of once-living materials containing carbon (bones, wood, etc).
a. Calculate the decay constant (k) for Carbon-14. Round to 7 decimal places
b. Write an exponential function modeling Carbon-14 decay.
c. Calculate the amount of 6 grams of Carbon-14 that will remain after 22,000 years. (Round to one decimal place.)
d. Determine the age of a bone fragment that contains 30% of the original amount of Carbon-14. (Round to the nearest year.)
9. Radium- 226 is a radioactive isotope with a half-life of about 1622 years. Calculate the decay constant (k) for Radium-226 and round it to 7 decimal places. Then find the amount of 20 grams of Radium- 226 remaining after 500 years and round it to 1 decimal place.
10. Find the magnitude R of the following earthquakes of intensity I. Round to 1 decimal place. (Remember: $R=\log I$)
a. $\quad I=39,811,000$
b. $\quad I=12,589,000$
c. $\quad I=251,200$
11. Determine the intensity of an earthquake of magnitude 6.3. Round answer to the nearest joule. (Remember: $R=\log I$)
12. A grape has a pH of 3.5 and a lemon juice solution has a pH of 4.6. Find the hydrogen ion concentration of both. Round to 7 decimal places. (Remember: $p H=-\log x$)
