Secondary Math III
Assignment 10.6 Review

Name: \qquad
Period: \qquad

1. Simplify the expression:
a. $\ln e^{2 x-1}$
b. $e^{\ln x^{2}}$
c. $1-\ln e^{2 x}$
d. $\quad 2 \log 10^{x-3}$
e. $8^{\log _{8} 25}$
f. $\quad \log _{4} 4^{3 x}$
2. Given $\log _{a} 2 \approx 0.356, \log _{a} 3 \approx 0.565$, and $\log _{a} 5 \approx 0.827$, use the properties of logarithms to evaluate the following:
a. $\log _{a} 18$
b. $\log _{a} \frac{6}{5}$
c. $\log _{a} 30$
d. $\log _{a} 27$
e. $\log _{a} \frac{5}{3}$
f. $\log _{a} 60$
3. Use the properties of logarithms to write the expression in terms of $\ln 2$ and $\ln 3$.
a. $\ln 12$
b. $\ln \left(\frac{3}{4}\right)$
4. Expand the expression (write as a sum or difference of logarithms). Simplify if possible.
a. $\quad \log _{3} 3 x$
b. $\log _{6}\left(\frac{2 x}{y^{2}}\right)$
c. $\quad \log _{9}\left(\frac{x+1}{9}\right)$
d. $\log _{6} \frac{x(x-3)^{2}}{\sqrt{x-5}}$
5. Condense the expression (write as a single logarithm).
a. $\quad \ln 4+3 \ln y+\ln z$
b. $\quad 3 \ln (x+1)-2 \ln y+\ln 2$
c. $\log 3+\frac{1}{2} \log x-\log 5$
d. $\log _{5}(x-1)+2 \log _{5} x-\frac{1}{2} \log _{5}(x+2)$
6. Use a calculator to evaluate the logarithm. Round to 3 decimal places.
a. $\log 129$
b. $\log _{2} 500$
c. $\ln (0.579)$
d. $\log _{5} 1.25$

Use the following formulas for 7-9:

$$
A=P\left(1+\frac{r}{n}\right)^{n t} \quad A=P e^{r t}
$$

Must show set up and all work.

7. You invested $\$ 2,500$ in an account paying 4.25% compounded continuously. How much will be in the account 10 years later?
8. You want to have $\$ 4,000$ in your savings account after 4 years. Find the amount you should deposit if the account pays 3.5% annual interest compounded quarterly.
9. Joel wants to have $\$ 10,000$ in an account in 15 years. How much should he put into the account if it pays 3% compounded continuously?

Solve the following equations algebraically. Check for extraneous solutions where needed. Round approximate answers to 3 decimal places.
10. $2 e^{3 x}=5$
11. $\ln x+\ln 2=4.1$
12. $4^{x+2}=\frac{1}{16}$
13. $3 \log _{4}(x-1)=2$
14. $\quad \log _{2}(x-1)+\log _{2}(x-3)=3$
15. $3 \cdot 4^{x-1}+11=32$
16. $\quad \log _{4}(2 x+7)=\log _{4}(5 x-5)$
17. $\quad 7^{x}=54$
18. $e^{-6-3 x}=e^{x^{2}+4 x}$
19. $\log x+\log 3=2$
20. $14^{7 x}+8=39$
21. $2 \ln x=x^{2}-2$ (Solve Graphically)
22. The radioactive isotope Actinium- 227 has a half-life of 22 years.
a. Use the half-life to find the value of k . (Hint: use the model $y=C e^{k t}$)
b. A sample contains 32 grams of Actinium-227. How much actinium- 227 remains after 18 years? Round answer to the nearest gram.
23. On the Richter scale, the magnitude R of an earthquake of intensity I (in joules) is modeled by $R=\log I$. Find the intensity of an earthquake that measures $\mathrm{R}=5.8$ on the Richter scale. Round to the nearest joule.
24. Chemists use the pH scale to test acidity. The equation is: $p H=-\log \left[H^{+}\right]$.
a. The hydrogen ion concentration of a vinegar (acetic acid) solution is about 1.5×10^{-5}. Find its pH .
b. Seawater has a pH of 8.5 . Find the hydrogen ion concentration of seawater.
c. A grape has a pH of 3.5 . Find the hydrogen ion concentration of a grape.

