Secondary Math III
Graphing Quadratic Functions
Assignment 2.4

Name
Period
\qquad

Graph the following quadratic functions without a graphing calculator. You may check your graph with a graphing calculator. Label the vertex and two other points.

1. $f(x)=x^{2}-6 x+1$

2. $g(x)=(x+1)^{2}-5$

3. $v(x)=-x^{2}+4 x-4$

4. $k(x)=\frac{1}{2}(x+4)(x-2)$

5. $m(x)=-2(x+2)^{2}-1$

6. $j(x)=(x-2)(x-4)$

Find the maximum or minimum value of the quadratic function by finding the vertex and considering the value of a. State whether it is a minimum or a maximum.
7. $f(x)=3 x^{2}+12 x-24$
8. $f(x)=-3(x+1)^{2}-5$
9. $p(x)=(x+2)(x-6)$
10. If the vertex of a parabola is $(5,-2)$ and the value of a is -4 , does the graph cross the x-axis? Give a reason for your answer.
11. Charlie kicks a soccer ball through a hoop that is 80 feet away from Charlie and 20 feet high. The equation modeling the path of the ball is $h(x)=-\frac{1}{80} x^{2}+\frac{5}{4} x$. Determine the maximum height of the ball.
12. It costs Acme Manufacturing C dollars per hour to operate its golf ball division. An analyst has determined that C is related to the number of golf balls produced per hour (x) by the function $C(x)=0.009 x^{2}-1.8 x+100$. What number of balls per hour should Acme produce to minimize the cost per hour?
13. If a soccer ball is kicked straight up with an initial velocity of 32 feet per second, then its height above the ground is given by $s(t)=-16 t^{2}+32 t$ where t is the time in seconds and s is the height in feet. Graph this function for $0 \leq t \leq 2$. What is the maximum height reached by the ball?

