Secondary Math III
Name \qquad
Building Cubic Functions \& Sketching Graphs
Period \qquad
Assignment 3.4
Write a cubic function with the given characteristics. There should be no i 's in the final answer.

1. zeros: $-3,0,1$
2. zeros: 4 (multiplicity 2) and -2
3. zeros: $0,3 i,-3 i$
4. zeros: 2 (multiplicity 3), $4 i,-4 i$

Use the degree and the leading coefficient to describe the left and right end behaviors of the graphs of the following polynomials:
5. $f(x)=2 x^{4}+3 x+1$
6. $g(x)=1-x^{5}$
7. $h(x)=3(x-4)^{2}(x+1)$

Determine the zeros (x-intercepts) and multiplicities. Identify the end behaviors and y-intercept. Then sketch the graph of the function.
8. $f(x)=x(x+2)(x-4)$

9. $f(x)=-x^{2}\left(x^{2}-9\right)$

11. $f(x)=x^{3}+4 x^{2}-12 x$

12. $f(x)=x^{4}-4 x^{2}-5$

13. $f(x)=\left(x^{2}-1\right)\left(x^{2}-16\right)$

14. $f(x)=x^{3}-10 x^{2}+25 x$

15. $f(x)=-(x+2)\left(x^{2}-6 x-8\right)$

16. $f(x)=-x^{2}\left(x^{2}-9 x+14\right)$

17. $f(x)=x^{4}-4 x^{2}$

Sketch the graph of a polynomial function that satisfies the given conditions.
18. Third degree polynomial with two real zeros and a negative leading coefficient.
19. Fourth-degree polynomial with three real zeros and a positive leading coefficient.
20. Fifth-degree polynomial with three real zeros and a positive leading coefficient.
21. Fourth-degree polynomial with two real zeros and a negative leading coefficient.
18.

19.

20.

21.

