Secondary Math III
Unit 3 Review
Assignment \#3.5

Show work for credit.

Multiple Choice:

1. Which of the following could be the graph of a fourth-degree polynomial with three real zeros and a positive leading coefficient?
a.

b.

c.

d.

2. Which of the following is a polynomial function with zeros of -1 (multiplicity 2) and 3 ?
a. $\quad f(x)=(x-1)^{2}(x-3)$
b. $f(x)=(x-1)^{2}(x+3)$
c. $f(x)=(x+1)^{2}(x-3)$
d. $f(x)=(x+1)^{2}(x+3)$
3. Determine the product of the three linear factors $(2 x-4)^{3}$
a. $8 x^{3}+64$
b. $8 x^{3}-48 x^{2}+96 x-64$
c. $6 x^{3}-12$
d. $8 x^{3}+16 x^{2}+32 x-64$
4. Analyze the graphs of $f(x)$ and $g(x)$. Pick the equation that correctly states $g(x)$ written in terms of $f(x)$.
a. $g(x)=-f(x)+2$
b. $g(x)=f(x)-2$
c. $g(x)=-f(x)-2$
d. $g(x)=f(x)+2$

Free response.

5. The equation of a transformed function $m(x)$ is given. State the transformation(s).

$$
m(x)=-x^{5}+5
$$

6. Use the graph to determine whether the function has even, odd, or neither symmetry.

7. Find the volume of a square pyramid which has a base that is 9 inches on each side and a height of 14 inches? The volume of a pyramid is given as follows: $V=\frac{1}{3}$ (area of base)(height)
8. Determine algebraically whether the function is even, odd, or has neither symmetry.
a. $\quad f(x)=-x^{4}+x^{2}-5$
b. $g(x)=5 x^{3}-6 x+1$
9. Use the given coordinate planes to sketch a graph with the graph with the given characteristics.
a. As $x \rightarrow \infty, f(x) \rightarrow-\infty$
Even degree
Three extrema
y-intercept at ($0,-3$)

b. As $x \rightarrow-\infty, f(x) \rightarrow-\infty$
Odd degree
5 zeros
y-intercept at (0,2)

10. Use the degree and the leading coefficient to describe the left and right end behaviors of the graph of the following polynomials:
a. $h(x)=x^{2}(3 x+3)^{3}(-x+3)$
b. $g(x)=5 x^{7}+7 x-3$

Left \qquad Right \qquad Left \qquad Right \qquad
11. FACTOR to determine the zeros (x-intercepts) and multiplicities. Then determine the end behaviors and y-intercept. Finally, sketch the graph of the function.
a. $f(x)=x^{3}+8 x^{2}-20 x$

Zeros: \qquad
Multiplicities: \qquad
End behaviors: \qquad
y-intercept: \qquad
12. Analyze the following two functions: $m(x)=x^{4} \quad p(x)=-m(x-3)+4$ $m(x)$ is graphed on the coordinate plane at the right.
a. Describe the transformations that produce $p(x)$.
b. Complete the table of values.

Reference Points on $\boldsymbol{m}(\boldsymbol{x})$	\rightarrow	Corresponding Points on $\boldsymbol{p}(\boldsymbol{x})$
$(0,0)$	\rightarrow	
$(1,1)$	\rightarrow	
$(2,16)$	\rightarrow	

c. Graph $p(x)$ on the same coordinate plane and state whether $p(x)$ has even, odd or neither symmetry.
13. Find the zeros of the quadratic functions.
a. $\quad x^{2}-2 x+2$
b. $x^{2}-6 x+2$
14. Graph. Label the vertex and two other points. SHOW WORK.
a. $\quad f(x)=-(x+4)^{2}+5$

Vertex: \qquad
Point 1: \qquad
Point 2: \qquad

b. $f(x)=-(x+1)^{2}+2$

Vertex: \qquad
Point 1: \qquad
Point 2:

