Secondary Math III Unit 3 Review Assignment #3.5

Name_____ Period____

Show work for credit.

Multiple Choice:

1. Which of the following could be the graph of a fourth-degree polynomial with three real zeros and a positive leading coefficient?

- 2. Which of the following is a polynomial function with zeros of -1 (multiplicity 2) and 3?
 - a. $f(x) = (x-1)^2(x-3)$
 - b. $f(x) = (x-1)^2(x+3)$
 - c. $f(x) = (x+1)^2(x-3)$
 - d. $f(x) = (x+1)^2(x+3)$
- 3. Determine the product of the three linear factors $(2x 4)^3$
 - a. $8x^3 + 64$
 - b. $8x^3 48x^2 + 96x 64$
 - c. $6x^3 12$ d. $8x^3 + 16x^2 + 32x - 64$
 - $d. 8x^{\circ} + 16x^{\circ} + 32x 64$
- 4. Analyze the graphs of f(x) and g(x). Pick the equation that correctly states g(x) written in terms of f(x).
 - a. g(x) = -f(x) + 2b. g(x) = f(x) - 2c. g(x) = -f(x) - 2d. g(x) = f(x) + 2

Free response.

5. The equation of a transformed function m(x) is given. State the transformation(s).

 $m(x) = -x^5 + 5$

6. Use the graph to determine whether the function has even, odd, or neither symmetry.

- 7. Find the volume of a square pyramid which has a base that is 9 inches on each side and a height of 14 inches? The volume of a pyramid is given as follows: $V = \frac{1}{3}(area \ of \ base)(height)$
- 8. Determine algebraically whether the function is even, odd, or has neither symmetry. a. $f(x) = -x^4 + x^2 - 5$ b. $g(x) = 5x^3 - 6x + 1$

- 9. Use the given coordinate planes to sketch a graph with the graph with the given characteristics.
 - a. As $x \to \infty$, $f(x) \to -\infty$ Even degree Three extrema y-intercept at (0, -3)

b. As $x \to -\infty$, $f(x) \to -\infty$ Odd degree 5 zeros y-intercept at (0, 2)

10. Use the degree and the leading coefficient to describe the left and right end behaviors of the graph of the following polynomials:

a. $h(x) = x^2(3x+3)^3(-x+3)$ b. $g(x) = 5x^7 + 7x - 3$

Right _____

Left_____ Right _____

11. FACTOR to determine the zeros (*x*-intercepts) and multiplicities. Then determine the end behaviors and *y*-intercept. Finally, sketch the graph of the function.

a. $f(x) = x^3 + 8x^2 - 20x$		b. $f(x) = x^2 - 2x - 8$	
Zeros:	¥	Zeros:	Ψ
Multiplicities:		Multiplicities:	
End behaviors:		End behaviors:	
y-intercept:		y-intercept:	

- 12. Analyze the following two functions: $m(x) = x^4$ m(x) is graphed on the coordinate plane at the right.
 - a. Describe the transformations that produce p(x).
 - b. Complete the table of values.

Left_____

Reference Points on m(x)	→	Corresponding Points on <i>p</i> (<i>x</i>)
(0, 0)	\rightarrow	
(1, 1)	\rightarrow	
(2, 16)	\rightarrow	

p(x) = -m(x-3) + 4

c. Graph p(x) on the same coordinate plane and state whether p(x) has even, odd or neither symmetry.

- 13. Find the zeros of the quadratic functions.
 - a. $x^2 2x + 2$ b. $x^2 6x + 2$

14. Graph. Label the vertex and two other points. SHOW WORK. a. $f(x) = -(x + 4)^2 + 5$

Vertex:	
Point 1:	
Point 2:	

b. $f(x) = -(x+1)^2 + 2$

Vertex:	
Point 1:	
Point 2:	