\qquad
Law of Sines
Period \qquad
Assignment 7.3
Use the Law of Sines to solve triangle ABC.

- Draw and label the triangles first.
- Determine which situation is given: ASA, AAS or SSA.
- If two triangles exist, solve both triangles and write both values on provided line.
- Round all angle measures to the nearest degree and all side lengths to the nearest tenth.

1. $A=14^{\circ}, B=62^{\circ}, a=4.3$

Given Situation: \qquad

Angle C = \qquad

Side $\mathrm{b}=$ \qquad
2. $A=25^{\circ}, C=37^{\circ}, b=13$
3. $A=36^{\circ}, a=8, b=5$
4. $A=58^{\circ}, a=11.4, b=12.8$

Side $\mathrm{c}=$ \qquad
Given Situation: \qquad

Angle B = \qquad

Side $\mathrm{a}=$ \qquad

Side $\mathrm{c}=$ \qquad
Given Situation: \qquad

Angle B = \qquad

Angle $\mathrm{C}=$ \qquad

Side $\mathrm{c}=$ \qquad
Given Situation: \qquad

Angle B = \qquad

Angle C = \qquad

Side $\mathrm{c}=$ \qquad
5. $C=76^{\circ}, c=18, a=20$

Given Situation:

Angle A = \qquad

Angle B = \qquad

Side $\mathrm{b}=$ \qquad
6. You are standing 40 meters due east from the base of a pine tree that is leaning 8° from the vertical away from you (toward the west). The angle of elevation from your feet to the top of the tree is 20°. Find the length of the tree.

Review:

Solve the trig equation for all solutions of in the interval [0, 2 $\boldsymbol{\pi}$).
7. $3 \tan ^{2} x-1=0$

Graph two periods for each function. Find the amplitude/reflections, period and shifts first. Include scales on both axes.
8. $f(x)=2 \sin (2 x)$

A

ACT:

9. In $\triangle A B C$, shown below, the measure of $\angle B$ is 41°, the measure of $\angle C$ is 34°, and $\overline{A B}$ is 25 units long. Which of the following is an expression for the length, in units, of $\overline{B C}$?
(Note: The law of sines states that, for any triangle, the ratios of the sines of the interior angles to the lengths of the sides opposite those angles are equal.)

A. $\frac{25 \sin 105^{\circ}}{\sin 41^{\circ}}$
B. $\frac{25 \sin 105^{\circ}}{\sin 34^{\circ}}$
C. $\frac{25 \sin 75^{\circ}}{\sin 41^{\circ}}$
D. $\frac{25 \sin 41^{\circ}}{\sin 105^{\circ}}$
E. $\frac{25 \sin 34^{\circ}}{\sin 75^{\circ}}$
