Secondary Math III Law of Sines

Name_____Period

Assignment 7.3

Use the Law of Sines to solve triangle ABC.

- Draw and label the triangles first.
- Determine which situation is given: ASA, AAS or SSA.
- If two triangles exist, solve both triangles and write both values on provided line.
- Round all angle measures to the nearest degree and all side lengths to the nearest tenth.
- 1. $A = 14^{\circ}$, $B = 62^{\circ}$, a = 4.3

Given Situation:_____

Angle C = _____

Side b = ____

Side c = _____

Given Situation:_____

Angle B = _____

Side a = _____

Side c = _____

Given Situation:_____

Angle B = _____

Angle C = _____

Side c = _____

Given Situation:_____

Angle B = _____

Angle C = _____

Side c = _____

2. $A = 25^{\circ}$, $C = 37^{\circ}$, b = 13

3. $A = 36^{\circ}$, a = 8, b = 5

4. $A = 58^{\circ}$, a = 11.4, b = 12.8

5. $C = 76^{\circ}$, c = 18, a = 20

Given Situation:_____

Angle A = _____

Angle B = _____

Side b = _____

6. You are standing 40 meters due east from the base of a pine tree that is leaning 8° from the vertical away from you (toward the west). The angle of elevation from your feet to the top of the tree is 20°. Find the length of the tree.

Review:

Solve the trig equation for all solutions of in the interval $\, [0, \, 2\pi) \, .$

7.
$$3\tan^2 x - 1 = 0$$

Graph two periods for each function. Find the amplitude/reflections, period and shifts first. Include scales on both axes.

$$8. f(x) = 2\sin(2x)$$

ACT:

In △ABC, shown below, the measure of ∠B is 41°, the measure of ∠C is 34°, and AB is 25 units long. Which of the following is an expression for the length, in units, of BC?

(Note: The law of sines states that, for any triangle, the ratios of the sines of the interior angles to the lengths of the sides opposite those angles are equal.)

- A. 25 sin 105° sin 41°
- B. 25 sin 105° sin 34°
- C. 25 sin 75° sin 41°
- D. 25 sin 41° sin 105°
- E. $\frac{25 \sin 34}{\sin 75^{\circ}}$