Secondary Math III Unit 8 Review Assignment 8.7 Name: _____ Period: _____

Show work for credit.

Multiple Choice.

- 1. Which of the following is a function that shifts the graph of $f(x) = \sqrt{x}$ to the left 5 units?
 - a. $g(x) = \sqrt{x} 5$ b. $g(x) = \sqrt{x} + 5$ c. $g(x) = \sqrt{x-5}$
 - d. $g(x) = \sqrt{x+5}$

2. Which expression is equal to $\sqrt{18x^2y^5z^8}$? Assume all variables to be positive.

- a. $9xy^2z^4$ b. $2x^2y^3z^4\sqrt{9y}$ c. $3xy^2z^4\sqrt{2y}$ d. $6xy^4z^6\sqrt{3yz^2}$
- 3. When the expression $3\sqrt{2x^2} 2x\sqrt{32} + \sqrt{50x^2}$ is simplified, it is equivalent to: a. 0
 - b. $-8x\sqrt{2}$
 - c. $16x\sqrt{2}$
 - d. $3\sqrt{52x^2} 16x\sqrt{2}$

4. Which type of transformation changes the graph of $f(x) = \sqrt{x}$ into the graph of $g(x) = \sqrt{3x}$?

- a. a vertical stretch
- b. a vertical compression/shrink
- c. a horizontal stretch
- d. a horizontal compression/shrink

5. Which is an extraneous solution of the equation $6 + \sqrt{x} = x$?

- a. x = 4b. x = 9c. x = -4
- d. x = -9

6. In order for g(x) to be an inverse of f(x), f(g(x)) must equal ...

- a. -1
- b. 1
- с. –х
- d. x

7. What is the exponential form of $\sqrt[3]{x^2}$?

a. $x^{-\frac{2}{3}}$ b. $x^{-\frac{3}{2}}$ c. $x^{\frac{2}{3}}$ d. $x^{\frac{3}{2}}$

8. If f(x) = x - 3 and $g(x) = \sqrt{2x}$, then $(g \circ f)(15) = a 2\sqrt{6}$ b. $3\sqrt{6}$ c. $15\sqrt{30} - 3$ d. $\sqrt{30} - 3$

Free Response. SHOW ALL WORK for credit.

Given $f(x) = 2x^2 - 8$, $g(x) = x^2 + 5x + 6$, and h(x) = 2x + 4, find and simplify the combined function and state the domain.

9. (f+g)(x) 10. (f-g)(x) 11. $(\frac{g}{h})(x)$

12.
$$\left(\frac{h}{f}\right)(x)$$
 13. $f(h(x))$ 14. $(h \circ g)(x)$

15. Given $f(x) = \frac{x-2}{5}$ a. Find the inverse function. Name it g(x).

b. Show that f(x) and g(x) found in part a are inverse by finding and simplifying f(g(x)) and g(f(x)). Show all steps!

Given $f(x) = x^2 - 9$ and $g(x) = \sqrt{2x + 1}$, find the following: 16. (f - g)(4) 17. g(f(3)) 18. $\left(\frac{g}{f}\right)(12)$ 19. $(g \circ f)(0)$ Describe the transformations of each function from $f(x) = \sqrt{x}$. Then match each function to its graph. 20. $g(x) = \sqrt{x+2}-2$

21. $h(x) = \sqrt{x-2} + 2$ 22. $j(x) = \sqrt{-(x+2)} + 2$ 23. $k(x) = -\sqrt{x-2} - 2$

 24. f(x) = 2x + 1 25. $f(x) = \sqrt{x-3}$

 Domain of f
 Domain of f^{-1}

 Range of f
 Range of f^{-1}

Restrict the domain so that the *f* function is one-to-one. Then find f^{-1} . State the domain and range of both, and graph both functions. 26. $f(x) = (x-4)^2$

				_			
_	_	_	_		_	_	

Domain of f Domain of f^{-1}

Range of f

Range of f^{-1}

Simplify. Positive Exponents only. Rationalize any denominators. Assume all variables to be positive.

27.
$$\sqrt{32x^3} + x\sqrt{8x}$$
 28. $\sqrt{\frac{x^5}{45}}$

29. $\frac{12}{\sqrt[3]{4}}$ 30. $\frac{6}{\sqrt{5}}$

Solve. Check your answers. 31. $\sqrt{3x} = 6$ 32. $(2x+5)^{\frac{1}{3}} = 3$ 33. $\sqrt{-4x+37} = -x+4$

34. The relationship between the length of a pendulum L (in feet) and its period T (in seconds) is modeled by the equation $T = 2\pi \sqrt{\frac{L}{32}}$. To the nearest foot, which is the length of a pendulum with period 8 seconds?

35. The price of a certain kind of computer is decreasing. A recent survey shows that the price of Acer 5950G is calculated by the function $P(t) = 823\sqrt{4-0.32t}$, where *P* is the price (measured in dollars) and *t* is the time (measured by years). Find the price of this computer after three years. Round your answer to the hundredths place.