Secondary Math III
Unit 8 Review
Name:
Period
$\qquad$
Assignment 8.7

## Show work for credit.

## Multiple Choice.

1. Which of the following is a function that shifts the graph of $f(x)=\sqrt{x}$ to the left 5 units?
a. $g(x)=\sqrt{x}-5$
b. $g(x)=\sqrt{x}+5$
c. $g(x)=\sqrt{x-5}$
d. $g(x)=\sqrt{x+5}$
2. Which expression is equal to $\sqrt{18 x^{2} y^{5} z^{8}}$ ? Assume all variables to be positive.
a. $9 x y^{2} z^{4}$
b. $2 x^{2} y^{3} z^{4} \sqrt{9 y}$
c. $3 x y^{2} z^{4} \sqrt{2 y}$
d. $6 x y^{4} z^{6} \sqrt{3 y z^{2}}$
3. When the expression $3 \sqrt{2 x^{2}}-2 x \sqrt{32}+\sqrt{50 x^{2}}$ is simplified, it is equivalent to:
a. 0
b. $-8 x \sqrt{2}$
c. $16 x \sqrt{2}$
d. $3 \sqrt{52 x^{2}}-16 x \sqrt{2}$
4. Which type of transformation changes the graph of $f(x)=\sqrt{x}$ into the graph of $g(x)=\sqrt{3 x}$ ?
a. a vertical stretch
b. a vertical compression/shrink
c. a horizontal stretch
d. a horizontal compression/shrink
5. Which is an extraneous solution of the equation $6+\sqrt{x}=x$ ?
a. $x=4$
b. $x=9$
c. $x=-4$
d. $x=-9$
6. In order for $g(x)$ to be an inverse of $f(x), f(g(x))$ must equal $\ldots$
a. -1
b. 1
c. $-x$
d. $x$
7. What is the exponential form of $\sqrt[3]{x^{2}}$ ?
a. $x^{-\frac{2}{3}}$
b. $x^{-\frac{3}{2}}$
c. $x^{\frac{2}{3}}$
d. $x^{\frac{3}{2}}$
8. If $f(x)=x-3$ and $g(x)=\sqrt{2 x}$, then $(g \circ f)(15)=$
a $2 \sqrt{6}$
b. $3 \sqrt{6}$
c. $15 \sqrt{30}-3$
d. $\sqrt{30}-3$

## Free Response. SHOW ALL WORK for credit.

Given $f(x)=2 x^{2}-8, g(x)=x^{2}+5 x+6$, and $h(x)=2 x+4$, find and simplify the combined function and state the domain.
9. $(f+g)(x)$
10. $(f-g)(x)$
11. $\left(\frac{g}{h}\right)(x)$
12. $\left(\frac{h}{f}\right)(x)$
13. $f(h(x))$
14. $(h \circ g)(x)$
15. Given $f(x)=\frac{x-2}{5}$
a. Find the inverse function. Name it $g(x)$.
b. Show that $f(x)$ and $g(x)$ found in part a are inverse by finding and simplifying $f(g(x))$ and $g(f(x))$. Show all steps!

Given $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{2}-9$ and $\boldsymbol{g}(\boldsymbol{x})=\sqrt{2 \boldsymbol{x}+1}$, find the following:
16. $(f-g)(4)$
17. $\quad g(f(3))$
18. $\left(\frac{g}{f}\right)($
(12)
19. $(g \circ f)(0)$

Describe the transformations of each function from $f(x)=\sqrt{x}$. Then match each function to its graph.
20. $g(x)=\sqrt{x+2}-2$
21. $h(x)=\sqrt{x-2}+2$
22. $j(x)=\sqrt{-(x+2)}+2$
23. $k(x)=-\sqrt{x-2}-2$


Find the inverse of $f$. Determine the domain and range of both $f$ and $f^{-1}$. Graph both.
24. $f(x)=2 x+1$

25. $f(x)=\sqrt{x-3}$


Domain of $f$

Range of $f$
Range of $f^{-1}$
Range of $f$
Range of $f^{-1}$

Restrict the domain so that the $f$ function is one-to-one. Then find $f^{-1}$. State the domain and range of both, and graph both functions.
26. $f(x)=(x-4)^{2}$

Domain of $f$
Domain of $f^{-1}$
Range of $f$
Range of $f^{-1}$


Simplify. Positive Exponents only. Rationalize any denominators. Assume all variables to be positive.
27. $\sqrt{32 x^{3}}+x \sqrt{8 x}$
28. $\sqrt{\frac{x^{5}}{45}}$
29. $\frac{12}{\sqrt[3]{4}}$
30. $\frac{6}{\sqrt{5}}$

Solve. Check your answers.
31. $\sqrt{3 x}=6$
32. $(2 x+5)^{\frac{1}{3}}=3$
33. $\sqrt{-4 x+37}=-x+4$
34. The relationship between the length of a pendulum $L$ (in feet) and its period $T$ (in seconds) is modeled by the equation $T=2 \pi \sqrt{\frac{L}{32}}$. To the nearest foot, which is the length of a pendulum with period 8 seconds?
35. The price of a certain kind of computer is decreasing. A recent survey shows that the price of Acer 5950G is calculated by the function $P(t)=823 \sqrt{4-0.32 t}$, where $P$ is the price (measured in dollars) and $t$ is the time (measured by years). Find the price of this computer after three years. Round your answer to the hundredths place.

