Instructions

- Complete the problems as if this were an actual test.
 - o 70-80 minutes of <u>uninterrupted</u> time. (this means no phones, Netflix, snapchat, etc....I promise you will survive (3)
 - o Don't use your calculator on the NonCalc problems
 - O No help from notes, friends, google, etc.
- After you have completed the problems, grade your test using the key provided.
- Try extra problems similar to the ones you missed until you feel like you understand those concepts.

Practice Test / Unit 6

Secondary 3 Honors

Non-Calculator

Simplify. Round any decimal answers to 3 decimal places.

1. $\ln e^{5x+1}$ 2. $6^{\log_6 23}$ 3. $\log_8 8^{x^5+4}$ 4. $e^{\ln(x+3)}$ 5. $\frac{6x^{-3}y^4}{(3xy^2)^{-2}}$ 6. $\log_4 64$

- 7. Condense the following. $2 \log x 3 \log y + \log z$
- 8. Expand. $\log_3(3x^2\sqrt{y})$

Graph. Make sure to show two points and the asymptote.

CALCULATOR.

Solve. Round any decimal answers to 3 decimal places.

12. $6e^{3x} + 2 = 6$ 13. $2(6)^{5x} - 3 = 10$

14.
$$5^{x^2} \cdot 5^{-x} \cdot 5^{-4} = 25$$
 15. $x^{\frac{3}{4}} = 8$

16.
$$\ln(x) - \ln(2) = 8$$
 17. $\log(2x + 3) + \log(3) = \log(7)$

18. Determine the amount of time for an investment to triple if the investment is compounded continuously at 3%. Round to 2 decimal places.

19. The half-life of radioactive technetium is 213,000 years. a. Use the formula $y = Ce^{kt}$ to solve for k. Round to **8 decimal places**.

b. If you begin with 30 grams of radioactive technetium, write the specific equation for the model.

c. using your equation from (b), how much will remain after 75,000 years?

20. Find $\lim_{x \to \infty} \frac{300}{1 + 2e^{-0.36t}}$