Unit 4 Review

Complete this assignment on your own paper. ©

Non-Calculator.

1)Simplify and state restrictions
a)
$$\frac{3x-2}{2x^2} - \frac{4-x}{6}$$
 b) $\frac{a^3-4a}{a^2-2a-35} \div \frac{a^2+4a+4}{a^2-5a-14}$
b) $\frac{3x-2}{2x-6} + \frac{9}{6-2x}$ d) $\frac{\frac{1}{x}+3}{\frac{1}{x-2}}$
2) Solve for x
a) $\frac{6}{2-6} - \frac{2}{x+3} = \frac{18}{x^2-3x-18}$
b) $\frac{1}{2x} + \frac{3}{x+7} = \frac{-1}{x}$
3) What are the equations of the vertical asymptotes of $f(x) = \frac{1}{x^2+2x-3}$
4) Where is the hole in the graph of $f(x) = \frac{(x-3)(x+4)}{(x+1)(x-3)}$
5) Write the equations of the vertical and horizontal asymptotes of $y = \frac{1}{(x+2)^2}$
Is the vertical asymptote above odd or even?
6) What is the equation of the horizontal asymptote of $= \frac{2x}{x-1}$?
7)Sketch the graphs completely by finding the domain, holes, VA, x-int, y-int, EB, and extra points as needed. (Remember end behavior can be thank the function has.
a) $f(x) = \frac{x^2-5x+4}{x^2-1}$
b) $f(x) = \frac{2x^2}{x^2-4}$
c) $f(x) = \frac{x^2-5x+4}{x^2-1}$
b) $f(x) = \frac{2x^2}{x^2-4}$
c) $f(x) = \frac{x^2-5x+4}{x^2-1}$
b) $f(x) = \frac{2x^2}{x^2-4}$
c) $f(x) = \frac{(x-3)^2(x+1)^4}{x^2-1}$
b) $f(x) = \frac{2x^2}{x^2-4}$
c) $f(x) = \frac{(x-3)^2(x+1)}{x^2-4x-3}$
c) $f(x) = \frac{x^2-5x+4}{x^2-1}$
b) $f(x) = \frac{2x^2}{x^2-4}$
c) $f(x) = \frac{(x-3)^2(x+1)}{x^2-4x-3}$
c) $f(x) = \frac{2x^2+5x^2+4}{x^2-1}$
c) $f(x) = \frac{(x-3)^2(x+1)}{x^2-4x-3}$
c) $f(x) = \frac{x^2-5x+4}{x^2-1}$
c) $f(x) = \frac{(x-3)^2(x+1)}{x^2-4x-3}$
c) $f(x) = \frac{(x-3)^2(x+1)}{x^2-4x-4x-3}$
c) $f(x) = \frac{(x-3)^2(x+1)}{x^2-4x-4x-3}$
c) $f(x) = \frac{(x-3)^2(x+1)}{x^2-4x-4x-4}$

Calculator

14) Sketch a graph that has the following characteristics: VA: $x = 2$ (odd)	15)You have to build a corral against an existing fence and you have 100 ft of fencing.		
VA: $x = -2$ (odd) SA: $y = x - 1$	Existing fence		
y-int: (0, 2) x-int: (1, 0) (odd) x-int: (4, 0) (even)	x		
	a) Find the maximum area (include units)b) What are the dimensions of the corral with		
	the maximum area? (Units!)		

Secondary 3 Honors