Unit 5 Notes / Secondary 3 Honors

Day 1: Introduction to Limits
- appreaches

Limit definition: If f(x) becomes “arbitrarily close” to some unique number L as x approaches C from either
side, then the limit of f(x) as x approaches Cis L.

lim f(x)=L | ‘UWmit as x appoacies ¢ of £(y) (s L"

Translation: ‘s W "appwaches a H , e 9 Approa ches Wihat # ,7

Remember, sometimes you get there and sometimes you don’t. It doesn’t matter. You are simply looking at what the>
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4, Use your calculator to find lim
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Use the graph to find lim f(x).
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Note: From the examples you should see that f(x) does not need to exist where x = c for a limit to exist at c.
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e Oscillating behavior

(- Look at the graph of f(x)= Sm( ) below to see why hm sm[ ] does not exist.
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9. Find the following limits using the graph of g(x).
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Day 2: Evaluating Limits \

Limits of polynomial and rational functions can be found by direct substitution if substituting does not create

a zero in a denominator.

Limits of Polynomial and Rational Functions
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Cancellation Method: Factor & Cancel

If substitution does create a zero in the denominator of a rational function, try to factor the numerator and
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denominator of the function, and then cancel common factors to reduce the function. Substitute into the

reduced function to find the limit. (Do you remember f(x) vs. k2

+ (x) and holes in the graph??)
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Rationalizing Method:
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Use the conjugate

A function containinhich produces % when using direct substitution may produce a limit if its

numerator and/or denominator are rationalized (multiply by a conjugate form). — W&€ the CD”J' wgate.
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To find limits of non-algebraic functions, you must often use more sophisticated techniques, requiring you to enlist
your calculator.

@?mblems will  tell U when its oF v use ca\lcuwlator.

Use your calculator to graph and then find values of f(x) for x close to c.
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5. Find Iirré(l +x)* to 4 decimal place accuracy.
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Sometimes a limit fails to exist because approaching c from the left produces a different value of L than approaching ¢

from the right when attempting to find lim f(x). In such cases you have 2 different one-sided limits.
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tIiE f (x) = L, represents the limit from theg’c (of c).

lim_f(x)= L, represents the limit from the E{}t (of ¢). X$He ) Means
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@ence of a Limit
If f is a function and c and L are real numbers, then lim f(x)= L ifand only if both the left and right limits
are equal to L.
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12. An overnight delivery service charges $8 for the first pound and $2 for each additional pound. Let x represent

the weight of a parcel and let f(x) represent the shipping cost. Show that the limit of f(x) as x—2 does not

o exist. ‘J&Mﬁ ‘p(}% = | )
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Day 3: Limits at Infinity ' \
Definition: If fis a function and I, and L, are real numbers, the statements lim f(x) =L, and

11_{1;10 f(x)=L, denote the limits a - -
Consider the function f(x)= 26-2-? Earlier we discovered that the horizontal asymptote for the graph of this
function is yzé.Why? ( EL:LZ Since GF.QQTEES afe Q%LLAQ)
Using limit notation, this can be written as follows: 4

lim f(x)=
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(Horizontal asymptote to the left.)

S

lﬂ f(x)= % (Horizontal asymptote to the right.)

These limits (at infinity) mean that the value of f(x) gets “arbitrarily” close to Vz as x decreases or increases
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5. Find the limit as x approaches infinity for each of the following functions:
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6. You are manufacturing a product that costs $0.50 per unit to produce. Your initial investment is $5000, which

implies that the total cost of producing x units is C=0.5x +5000. The average cost per unit is given by

C 0.5x+5000
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X X
a.x=1000 b. x=10,000
~ _ +s(i008) t So00 - 5([0 000) 15000
= — C
[oeD [o 00D

e\ i

d. What is the limit of C when x approaches infinity?
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Day 4: Limit Definition of a Derivative ) \

Tangent Line to a Graph and Slope of a Graph

To find the rate at which a graph rises or falls (increases or decreases) at a single point, you can find the slope -
of the tangent line at that point. This slope represents the instantaneous rate of change (IROC) of y with

respect to x (-g] at that point.

We can find IROC by usinrom the calc menu on your calculator.

In simple terms, the tangent line to a graph at a point is a line which best approximates the graph at that

point. The slope of the tangent line at a point on a graph basically represents the “slope” of the graph at that
Bl e e
point.
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1. Use the graph below to approximate the slope of the graph of y = x? at the point (1, 1).
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2 The graph below represents the average daily temperature (in degrees Fahrenheit) for each month in Dallas,
Texas. Estimate the slope of this graph at the indicated point and give a physical interpretation of the result.
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Hard

Slope and Limit Process

Visual approximations provide an imprecise way of finding slopes (rates of change). A more precise method
involves secant lines and the limit process.

-
In the figure below, suppose you wish to find the “slope” of the graph of y = f(x) at the point (x,f(x)). Using
a secant line passing through that point and another point h units to the right (as shown) you can find the
slope of the secant line to be:
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This is a slope formula. The closer the points are, the better the approximation of the slope of the tangent line.
B e e i .

The slope of a graph = the slope of a tangent line and is given by:
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h= distance lactween ponts

as pinte get clserand closer W —30
This represents the instantaneous rate of change at (x, /(x)).

, provided that this limit exists.
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Derivative of a Function
When you derive the equation for the slopes of a graph, you are finding the derivative of f at x denoted as
Y or f(x) -‘@:\10\(’\ HSov dervative — 4(7\64\/] o A - -
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3 Use the definition to find the slope of the graph of f(x)=x? at any point.
(That is find a general equation for the slope and call it % ).
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4. Use your answer from #3 to find the slope of the graph of f(x) = x”at the points:
a. @4) b.  (0,0) c.  (10,100)
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5. Find the derivative of f(x)=3x"—2x.
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Evaluate the derivative at x = -1 and x = 2, and verify with your calculator.
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Write the equation for the tangent line at x = 2. V=—y= m(x—xl)
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Equation of dangect point: (2,8)
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6. Find the derivative of y =+/x+ 2 . Evaluate the derivative atx = 3 argd x = -2, and verify with your calculator.
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