Instructions

- Complete the problems as if this were an actual test.
 - 50-60 minutes of <u>uninterrupted</u> time. (this means no phones, Netflix, snapchat, etc....I promise you will survive (3))
 - \circ No help from notes, friends, google, etc.
- After you have completed the problems, grade your test using the key provided.
- Try extra problems similar to the ones you missed until you feel like you understand those concepts.

Secondary Math III Unit 5 Practice Test

1. Which function has a graph with a hole?

a.
$$f(x) = \frac{x-5}{x^2+25}$$
 b. $g(x) = \frac{x^2-3x-28}{x+4}$ c. $h(x) = \frac{x^2+3x-28}{x+4}$ d. $k(x) = \frac{x}{x^2-25}$

2. Which function has a vertical asymptote at x = 2 and a horizontal asymptote at $y = \frac{3}{4}$?

a.
$$f(x) = \frac{3x}{4x-8}$$
 b. $g(x) = \frac{x+3}{x^2-4}$ c. $h(x) = \frac{3x}{x-2}$ d. $k(x) = \frac{x}{x-2}$

3. What is the least common denominator (LCD) of the rational expressions: $\frac{7}{x+4}$, $\frac{5+x}{4}$ and $\frac{x}{x^2-16}$?

4. Perform the operation
$$\frac{12x^2+24x}{x^2-9x+18} \cdot \frac{x^2-3x-18}{5x+10}$$
?

5. Perform the operation
$$\frac{x}{x^2} - \frac{1}{7x}$$
?

6. What is the domain of the function $f(x) = \frac{9x+4}{x-3}$?

Simplify, multiply, divide, add or subtract as indicated. List any restrictions on the variable and simplify answers where possible.

7.
$$\frac{5x^3 + 45x^2}{x^2 + 5x - 36}$$
 8. $\frac{3x - 4}{x^2 - 25} + \frac{5}{x - 5}$

9.
$$\frac{x - \frac{36}{x}}{1 + \frac{6}{x}}$$
 10. $\frac{x^2 + 9x}{x + 8} \div \frac{x^2 + 12x + 27}{x^2 - 64}$

Solve	each	equation.	List any	restrictions	on	the	varia	ble.
11 r	35	= -2	-		1	2	$\frac{x+6}{x+6}$ =	= 8
11.70	x	-			1	2.	x-4	9

Find the following and draw the graph of the function. Be sure to draw asymptotes as dashed lines and holes as open circles. (Hint: there is a hole):

13. $f(x) = \frac{3x+24}{x^2+3x-40}$

Simplified form_____

Vertical asymptote(s):_____ Horizontal asymptote: _____ Hole:_____

Intercepts:	

additional points:_____

 	 	 _		
		-		
		-		