Instructions

- Complete the problems as if this were an actual test.
 - 50-60 minutes of <u>uninterrupted</u> time. (this means no phones, Netflix, snapchat, etc....I promise you will survive (3)
 - \circ No help from notes, friends, google, etc.
- After you have completed the problems, grade your test using the key provided.
- Try extra problems similar to the ones you missed until you feel like you understand those concepts.

Secondary Math III Unit 8 PRACTICE EXAM

Name: _____ Period:

Multiple Choice. Choose the best answer. There is only one correct answer for each problem.

- 1. Describe the transformation from $f(x) = \sqrt[3]{x}$ to $g(x) = \sqrt[3]{3x}$
 - a. a vertical stretch
 - b. a vertical compression/shrink
 - c. a horizontal stretch
 - d. a horizontal compression/shrink

2. Which is the result of simplifying $\sqrt{18x^2y^5}$? Assume all variables to be positive.

- a. $2xy^2\sqrt{3y}$
- b. $2xy\sqrt{3y^3}$
- c. $3xy^2\sqrt{2y}$
- d. $3x^2y^5\sqrt{2}$

3. The time it takes a pendulum to complete one full swing is given by the radical function $T = 2\pi \sqrt{\frac{L}{9.8}}$, where

T is the time in seconds and L is the length of the pendulum in meters. To the nearest tenth of a second, how long does it take for the pendulum to complete one full swing it its length is 1.2 meters?

- a. 0.4 seconds
- b. 0.7 seconds
- c. 1.2 seconds
- d. 2.2 seconds

4. Which of the following is $xy^{3/2}$ written in radical terms?

a. $x\sqrt{y^3}$ b. $\sqrt{xy^3}$ c. $x\sqrt[3]{y^2}$ d. $\sqrt[3]{xy^2}$

5. If $f(x) = \sqrt{x+3}$ and $g(x) = x^2$, find $(f \circ g)(3)$

- a. 6
- b. 9
- c. $2\sqrt{3}$
- d. $4\sqrt{3}$
- 6. If f(x) and g(x) are inverses then f(g(x)) =
 - a. –*x*
 - b. *x*
 - c. 0
 - d. 1

Free Response. <u>Show all work</u>! You will not receive any credit if there is no work to support your answers.

Given $f(x) = x^2 + x$ and g(x) = 2x - 1, perform the indicated operation and simplify when possible. State the Domain on 7 and 8. (+2 for each) 7. (f - g)(x) = D

7. (f-g)(x) D: _____ 8. $(g \circ f)(x)$ D: _____

9.
$$(f \cdot g)(2)$$
 10. $(g \circ f)(-2)$

11. Given $f(x) = (x-2)^2$.

- a. Graph f(x). (+2)
- b. Restrict the domain of f(x) so it is a one-to-one function. (+1)

Domain: _____

c. Find $f^{-1}(x)$. (+2) Then graph $f^{-1}(x)$ on the same coordinate system as f(x).

$$f^{-1}(x) =$$

The graph of the square root function, $f(x) = \sqrt{x}$, is shown below.

Sketch the graph obtained by the following changes, and then write an equation for the new function g(x). (+3; 2 pts equation; 1 pt graph)

12. Vertical stretch by a factor of 2; shift left 3

13. Find the inverse function of $f(x) = \frac{5x-2}{2}$. (+3)

$$f^{-1}(x) =$$

Simplify. Rationalize any denominators. Assume all variables to be positive. (+3 each) 14. $(x^3y^5)^{-3}$ 15. $5\sqrt[3]{16} - \sqrt[3]{54}$

16.
$$\frac{4}{\sqrt{2}}$$
 17. $\sqrt{3} \cdot \sqrt{15}$

Solve. Check your answers. (+3 each) 18. $\sqrt[3]{x-7}+8=10$

19.
$$\sqrt{x+5} = x+3$$